Semantic biclustering for finding local, interpretable and predictive expression patterns
نویسندگان
چکیده
منابع مشابه
Evolutionary Algorithms for Finding Interpretable Patterns in Gene Expression Data
Microarray Technology allows us to measure the expression of thousands of genes simultaneously, and under specific conditions. Clustering is the main tool used to analyze gene expression data obtained from microarray experiments. By grouping together genes with the same behavior across samples, resultant clusters suggest new functions for some of the genes. Non-exclusive clustering algorithms a...
متن کاملAn Efficient Biclustering Algorithm for Finding Genes with Similar Patterns in Time-series Expression Data
Biclustering algorithms have emerged as an important tool for the discovery of local patterns in gene expression data. For the case where the expression data corresponds to time-series, efficient algorithms that work with a discretized version of the expression matrix are known. However, these algorithms assume that the biclusters to be found are perfect, in the sense that each gene in the bicl...
متن کاملInterpretable Semantic Textual Similarity: Finding and explaining differences between sentences
User acceptance of artificial intelligence agents might depend on their ability to explain their reasoning, which requires adding an interpretability layer that facilitates users to understand their behavior. This paper focuses on adding an interpretable layer on top of Semantic Textual Similarity (STS), which measures the degree of semantic equivalence between two sentences. The interpretabili...
متن کاملAnalysis of Gene Expression Patterns Using Biclustering.
Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gen...
متن کاملFacial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Genomics
سال: 2017
ISSN: 1471-2164
DOI: 10.1186/s12864-017-4132-5